Presenting parabolic subgroups

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parabolic subgroups of Garside groups

A Garside monoid is a cancellative monoid with a finite lattice generating set; a Garside group is the group of fractions of a Garside monoid. The family of Garside groups contains the Artin-Tits groups of spherical type. We generalise the well-known notion of a parabolic subgroup of an Artin-Tits group into that of a parabolic subgroup of a Garside group. We also define the more general notion...

متن کامل

Another Characterization of Parabolic Subgroups

Let G be a reductive algebraic group defined over an algebraically closed field k. Let H be a closed connected subgroup of G containing a maximal torus T of G. In [13] it was shown (at least in characteristic zero) that the parabolic subgroups of G can be characterized among all such subgroups H by a certain finiteness property of the induction functor (-)Iz and its derived functors Lk,G(-). Th...

متن کامل

Kostant’s problem and parabolic subgroups

Let g be a finite dimensional complex semi-simple Lie algebra with Weyl group W and simple reflections S. For I ⊆ S let gI be the corresponding semi-simple subalgebra of g. Denote by WI the Weyl group of gI and let w◦ and w I ◦ be the longest elements of W and WI , respectively. In this paper we show that the answer to Kostant’s problem, i.e. whether the universal enveloping algebra surjects on...

متن کامل

Kostant ’ s problem and parabolic subgroups Johan

Let g be a finite dimensional complex semi-simple Lie algebra with Weyl group W and simple reflections S. For I ⊆ S let g I be the corresponding semi-simple subalgebra of g. Denote by W I the Weyl group of g I and let w • and w I • be the longest elements of W and W I , respectively. In this paper we show that the answer to Kostant's problem, i.e. whether the universal enveloping algebra surjec...

متن کامل

Maximal parabolic subgroups in OV Introduction

Definition 1. Let G be a permutation group on a set  and x be an element of . Then Gx  g ∈ G ∣ gx  x is called the stabilizer of x and consists of all the permutations of G that produce group fixed points in x. Definition 2. A vector subspace S ⊂ V is isotropic if for any v,w ∈ S, the symmetric bilinear form satisfies: Bv,w  0 Definition 3. A maximal parabolic subgroup in an orthogon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Algebraic & Geometric Topology

سال: 2013

ISSN: 1472-2739,1472-2747

DOI: 10.2140/agt.2013.13.3203